Akademie Nieuws
Dr. Arthur Bergen en dr. Maarten Kamermans van het Interuniversitair Oogheelkundig Instituut:
“Interpreteren wat we zien begint al in het netvlies”
“Twee enorme ogen en een klein rotstaartje”, veel meer is een embryonaal zebravisje niet, vat dr. Arthur Bergen (39) vrolijk samen. Nu staat er nog maar een klein aquariumpje in het laboratorium, maar binnenkort zullen er flinke scholen van de gestreepte beestjes rondzwemmen bij het IOI, het Interuniversitair Oogheelkundig Instituut, waar onderzoek wordt gedaan naar de werking van het menselijk oog en oogziektes. De zebravisjes moeten daarbij gaan helpen, en trouwens, goudvissen doen dat al.
Hebben wij dan vissenogen? Bergen en zijn collega dr. Maarten Kamermans (44) kijken elkaar even aan en lachen. “Het antwoord hangt af van aan wie je het vraagt”, zegt Kamermans opgewekt. “Natuurlijk zijn er verschillen tussen mensen en vissen, maar veel is wel degelijk hetzelfde of vergelijkbaar.” Bergen vult aan: “Als je bedenkt dat het ‘master gene’ voor oogontwikkeling hetzelfde is bij de fruitvlieg als bij de mens…” Kamermans: “In sommige opzichten lijken we meer op vissen dan op bijvoorbeeld muizen, die nachtdieren zijn.” Dat neemt niet weg dat transgene muizen de andere belangrijke proefdieren zijn op het IOI, dat vorig jaar een nieuw gebouw betrok vlak achter het Amsterdams Medisch Centrum.
Het gaat de beide biologen om netvliezen. Dat is hun terrein, al verschilt hun invalshoek. Bergen leidt de groep die onderzoek doet naar erfelijke oogziekten, voormalig KNAW-fellow Kamermans voert degenen aan die erachter proberen te komen hoe signaaldoorgifte in het netvlies in zijn werk gaat.
Binnenbekleding
Het netvlies, Latijnse term retina. De meesten van ons leerden op school dat het bestaat uit kegeltjes en staafjes, en dan had je ook nog zoiets als de gele vlek. Zo is het ook. De binnenbekleding van de achterwand van de oogbol bestaat uit grote hoeveelheden lichtreceptoren: bij de mens zo’n 120 miljoen staafjes en zes miljoen kegeltjes. Alleen met de kegeltjes kun je kleur zien, en goed details waarnemen. De gele vlek, of macula, is het middelste stukje netvlies, het deel waarmee we focussen en dat uitsluitend uit heel dicht op elkaar gepakte kegeltjes bestaat. De staafjes zijn absoluut noodzakelijk om ook in het duister dingen te kunnen ontwaren.
Maar wie dacht daarmee wel zo’n beetje te weten wat het netvlies doet, heeft het verschrikkelijk mis. Op de tafel in de kamer van Bergen waar we praten liggen twee hele dikke gebonden boeken. “Dat gaat allemaal over het netvlies, het is een wetenschap op zich, ” zegt hij. “Er is ook nog een derde deel.” Zo veel informatie alleen al over het eerste stukje van wat we zien noemen. Bergen: “Nou, over wat eraan voorafgaat bestaan net zulke dikke pillen. Bijvoorbeeld over het hoornvlies en hoe het licht naar binnen valt door de pupil. Ook dat is een hele wetenschap.”
Bergen en Kamermans wijzen erop dat het oog nogal eens met een camera vergeleken wordt, maar dat is een kortzichtige visie. Camera’s registreren wel, maar interpreteren kunnen ze niet. En dat is nou net wat het visuele systeem wel doet. Dat zit dan ook behoorlijk ingenieus in elkaar. Het eerste deel is het netvlies dat aan de achterkant van het oog licht en alle informatie via de oogzenuw de hersenen in stuurt. De zenuwvezels van de twee ogen kruisen elkaar op een punt dat bekend staat als het chiasma (opticum), waar beide zenuwstrengen in tweeën splitsen.
Grauw
De helft van de informatiestroom blijft in de hersenhelft waar hij begon, maar de andere helft maakt de oversteek naar de tegenoverliggende hersenhelft. Dat lijkt een veiligheidsmechanisme. Vandaar gaat het verder, via een vastliggende route, die uitkomt bij de visuele cortex aan de achterkant van het hoofd. Daar bevindt zich zowel een soort verzamelpunt, V1 genoemd, als gespecialiseerde stukjes hersenschors voor bijvoorbeeld kleurverwerking en het verwerken van bewegingen. Gaan die laatste kapot dan wordt de wereld grauw, of verdwijnen en verschijnen bewegende dingen of mensen aldoor in en uit beeld.
Hoe interpreteren nu precies in zijn werk gaat, is nog steeds niet bekend, maar Kamermans benadrukt dat het al begint in het netvlies. Dat is dan ook hersenweefsel – dat dus neuronen bevat. De retina is ons eerste of ons laatste stukje hersenen, het is maar hoe je het bekijkt. “Wij zien kleuren als constant”, legt Kamermans uit, “ook daarin verschillen we van een camera. Wit papier is voor ons altijd wit, ongeacht de kleur van het omgevingslicht. Daar is een correctie voor nodig, en er werd altijd gezegd dat die in het brein moest plaatsvinden. Maar het blijkt dat kleurenconstantheid al in de eerste synaptische laag van het netvlies geregeld wordt.”
Kamermans spreekt met ontzag over het oog: “Bedenk maar eens hoe moeilijk het is een foto goed te belichten. Het oog kan zich echter moeiteloos aanpassen van sterren in een pikdonkere nacht tot een zonovergoten strand; dat loopt van één foton tot een een met twaalf nullen. Ook het selecteren van dat bereik vindt al plaats in die eerste laag.”
Ziekte definiëren
Op tafel ligt een kleurenplaatje van de lagen waaruit het netvlies is opgebouwd. Bergen, die zijn onderzoekswerk samenvat als “ziektes van het netvlies definiëren als moleculen”, wijst aan: “Dit is het retinaal pigment epitheel, dan krijg je de fotoreceptoren, dus de staafjes en de kegeltjes. Die worden overigens constant afgebroken en weer aangemaakt. Het stukje daarna, met onder andere de horizontale en bipolaire cellen, is vooral Maartens terrein. Bij de interactie tussen die lagen zijn honderden tot duizenden moleculen betrokken, en daarbij komen we elkaar vanzelf tegen, of we nou willen of niet.”
Licht omzetten in hele kleine elektrische stroompjes die de oogzenuw ingaan, dat is wat er kort samengevat in het netvlies gebeurt. Daar ligt een heel doorgiftesysteem aan ten grondslag, dat deels afwijkt van wat er al bekend was over zenuwcellen. Kamermans: “We hebben een nieuwe vorm van neurale communicatie gevonden. Meestal verloopt het contact tussen neuronen via de synapsen waardoor een neurotransmitter, een boodschapperstof, wordt doorgegeven die een reactie in de volgende cel uitlokt waarbij de spanning binnen de celmembraan verandert.”
Subtieler
“Wat wij nu hebben ontdekt is een subtielere vorm van communicatie, zonder neurotransmitter, waarbij alleen de spanning aan de buitenkant van de cel verandert. Dat maakt wel dat er kanaaltjes in het membraan opengaan waardoor er calcium de cel instroomt. Waarschijnlijk gebeurt datzelfde ook elders in de hersenen. Maar het is moeilijk te meten. We hebben het kunnen zien bij een cel met maar één synaps, wat heel bijzonder is, want het zijn er normaal gesproken een heleboel.”
De eiwitten die daarbij een rol spelen zullen nu in de zebravisjes bestudeerd gaan worden. “Het is niet de bedoeling een grote screening te gaan doen”, legt Kamermans nog even uit. “We werken samen met een ander Akademie-instituut, het Hubrechtlaboratorium voor ontwikkelingsbiologie. Ik verwacht dat ze daar al allerlei mutanten hebben waar wij ons voordeel mee kunnen doen. We zijn aan het oefenen. Inmiddels kunnen we in drie minuten een netvliesje van een zebravis prepareren. Dat kunnen we dan nog vier en een half uur levend houden voor onze experimenten.”
Larfjes
Maar de goudvissen, die Kamermans al eerder voor onderzoek gebruikte, zullen ook nodig blijven, al was het maar omdat zebravisjes voor sommige dingen te klein zijn. Dat er in de afgelopen pakweg tien jaar zoveel bekend geworden is van werking en functie van het netvlies heeft veel met nieuwe technieken in de moleculaire biologie te maken. Het is bijvoorbeeld mogelijk heel selectief dingen uit een cel te halen of er juist in te doen. Zelfs één enkele cel uit een kweek schieten en die dan moleculair biologisch onderzoeken kan. Maar ook de elektrofysiologische activiteit van een heleboel cellen tegelijk. Dat is nu alleen iets waar de techniek bij zebravisjes nog tekort schiet: de netvliezen zijn te klein, er is domweg niet genoeg ruimte. Bij de larfjes is het nog lastiger, en toch zal daar soms mee gewerkt moeten worden.Bergen: “Sommige blinde mutanten leven maar een dag of twaalf, omdat ze hun voer niet zien en dus niet eten.”
Blinde babyvisjes, ach. Kleurenblind blijken vissen ook al te kunnen zijn. In het laboratorium waar we later even rondkijken, en waar opvallend veel onderzoek in complete duisternis moet plaatsvinden, staan goudvissenkommen met uitzicht op lampjes. De vissen zijn makkelijk te conditioneren (“Dat doet iedereen thuis ook met zijn busje voer waar ze meteen op afzwemmen”, zegt Kamermans laconiek), en je kunt ze leren op verschillende kleuren licht te reageren. Zo kun je dus ook ontdekken of ze kleurenblind zijn. Bergen: “Met de zebravisjes zal het allemaal een beetje anders gaan, want die leven echt in scholen.”
Heel geschikt
In tegenstelling tot de goudvis zijn zebravissen heel geschikt voor genetisch onderzoek.. Nieuwe generaties zijn in een mum van tijd gekweekt en er zijn grote aantallen verschillende mutanten. Niet voor niks worden ze de nieuwe fruitvliegjes genoemd. “Het is de C. elegans van de gewervelden”, zegt Bergen, refererend aan het kleine wurmpje waarvan vorig jaar de complete genetische code bekend werd. Van het zebravisje is ook al veel vastgelegd. De volledig genetische code zal, zo wordt geschat, in 2004 opgehelderd zijn. Beide onderzoekers haasten zich overigens om nog eens op te merken dat je aan de genetische code alleen niet veel hebt. “Dan begint het pas”, zeggen ze in koor.
Plaats én functie van een gen vaststellen, dan komen er wel mogelijkheden in zicht. Het is de specialiteit van Bergen. In het juninummer van Nature Genetics is net een artikel verschenen over de identificatie van het gen dat betrokken is bij PXE, Pseudoxanthoma elasticum, een relatief zeldzame ziekte, die de elasticiteit van bindweefsel vermindert. Ook die van het netvlies, waarin scheuren ontstaan die uiteindelijk het gezichtsvermogen sterk aantasten. De identificatie is ook van belang voor huidziekten, en voor hart- en vaatziekten, zoals vroegoptredende aderverkalking, waar PXE-patiënten ook vaak aan lijden.
Bergen is heel enthousiast over de vondst, want het blijkt ook nog om een type gen te gaan waar bij het kankeronderzoek veel belangstelling voor bestaat. Het is een van de zogeheten ‘Multi Drug Resistance genen’ die de functie van moleculaire pomp hebben. Ze zijn in staat bepaalde geneesmiddelen uit een cel te pompen, en zouden dus als gevolg kunnen hebben dat cellen resistenter worden voor sommige anti-kankermiddelen. Bergen werkt dan ook al samen met een aantal hart- en vaatonderzoekers, en met kankeronderzoekers.
Nachtblindheid
Vorig jaar identificeerde zijn groep een gen dat een bepaald type Retinitis Pigmentosa tot gevolg kan hebben. En aan die ziekte, door kenners aangeduid als R.P., lijden maar liefst 25.000 mensen in Nederland. “R.P. heeft heel veel vormen, en er zijn tenminste 25 genen bij betrokken, die heel ingewikkeld op verschillende manieren samenwerken”, vertelt Bergen. Bij R.P. gaat het netvlies langzaam maar zeker te gronde. “Het begint met nachtblindheid, dat kan een eerste teken zijn. Daarna wordt iemands gezichtsveld langzaam maar zeker steeds kleiner, alsof hij door een steeds smaller wordende koker kijkt. Bij ongeveer de helft van erfelijke oogziekten in Nederland gaat het om Retinitis Pigmentosa.”
Bergen wil op zoek gaan naar overeenkomstige genen bij de zebravisjes, zogenaamde homologen. Maar over gentherapie spreekt hij voorzichtige woorden, en dat doet Kamermans ook. Na het eerste enthousiasme is men in onderzoeksland een beetje terughoudender geworden, want de verwachte mooie resultaten bleven uit. Kamermans: “Je grijpt toch in in een complex, teruggekoppeld systeem. Er zijn heel weinig voorbeelden van waar dat goed gaat. Ik kan alleen insuline voor diabetespatiënten bedenken, maar dan nog: daar is de patiënt zelf de voortdurende ‘check’ op of het wel goed gaat.”
Wereld van verschil
Toch zou juist het oog, dat zich zo aan de buitenkant bevindt en bovendien een bijzonder afweersysteem heeft wel een geschikte plaats voor gentherapie kunnen blijken, denkt hij. “En de gevaren van het werken met afgezwakte virussen – vectoren worden ze genoemd – die een gen binnen in de cel moeten brengen, zijn de laatste paar jaar heel veel verminderd. Dat is echt een wereld van verschil,” voegt Bergen toe.
En je moet je eisen misschien ook niet te hoog stellen, vindt hij. “Vier procent van de mensen boven de zestig lijdt aan ouderdoms-maculadegeneratie, waarbij dus de gele vlek steeds slechter functioneert, en patiënten niet meer scherp kunnen zien. Dat heeft allerlei oorzaken, maar je bent er wel genetisch voor gepredisponeerd. We hebben inmiddels een stamboom die uniek is in de wereld, van een familie waarin die leeftijdsgebonden maculadegeneratie heel veel voorkomt. Dat geeft ons een goede kans de genen die erbij betrokken zijn te vinden. Dat hoeft niet meteen tot gentherapie te leiden, maar stel dat je iets zou vinden waardoor je het begin van de ziekte tien jaar zou kunnen uitstellen. Dat maakt voor miljoenen mensen in de wereld verschrikkelijk veel uit.”
Ouders in spe
Genidentificatie betekent wel vaak direct dat je kunt nagaan of twee mensen kans lopen een kind met een bepaalde oogziekte te krijgen. Een op de tweeduizend Nederlandse baby’s komt met een aangeboren visuele handicap ter wereld. Nogal wat van die ziektes treffen alleen jongetjes. Maar vrouwen die zelf kerngezond zijn, kunnen wel draagster van het gen zijn. Bij allerlei genen kan het van belang zijn beide ouders in spe te onderzoeken. De identificatie van een ziektegen heeft ook als gevolg dat het mogelijk wordt na te gaan of een foetus gezond is, of ziek, of alleen drager van de ziekte. Allemaal informatie die vergaande consequenties kan hebben: van besluiten nooit aan kinderen te beginnen tot het afbreken van een zwangerschap. In die opzichten heeft het genetisch onderzoek wel directe toepassingen.
Ziek en gezond hebben natuurlijk alles met elkaar te maken. Het een helpt het ander te begrijpen, en andersom. Kamermans: “Mij gaat het om functie. Hoe werkt het? Daar ligt ook onze expertise. Je hebt die hele cascades van eiwitten, en ik wil weten wat er gebeurt als je die modificeert, daarin ingrijpt. Kijk, we kennen het systeem nu redelijk, en ik wil het op bepaalde, goed gedefinieerde plekken een duwtje geven. Door bijvoorbeeld te verhinderen dat een bepaald gen tot expressie komt.”
De zebravisjes, gemuteerde en gewone, moeten de weg naar de climax helpen bereiden. Het zal nog jaren duren, maar de complete kaart van genetische variatie in relatie tot functie komt eraan.